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Our result: a new anomaly
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Calabi-Yau compactifications

Type |l string theory (supergravity multiplet (metric & graviphoton)

compactification . .
on a Calabi-Yau / < vector multiplets (gauge fields & scalars)

hypermultiplets (only scalars
=2 supergravity in 4d YP plets (only )

coupled to matter The low energy effective action is completely
determined by the geometry of
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Classical symmetries

In the classical limit (o/ — 0, gs — 0) the metric on My is given by the c-map.
It has the following continuous isometries:
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Quantum symmetries
Quantum corrections break the continuous isometries to discreet subgroups

But it is not sufficient to
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Anomaly
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Resolution of the anomaly

The idea: the problem lies in the quadratic refinement
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Coclusions

e We showed that the consistent implementation of discrete isometries on
the HM moduli space of Calabi-Yau compactifications requires a modification
of the monodromy transformations of the RR-fields by inhomogeneous terms
determined by the second Chern class and intersection numbers.

e After this modification, it was shown that NS5-brane instantons derived
using S-duality are also consistent with the Heisenberg and monodromy
invariance.

e The anomalous transformation of the RR-fields provides a generalization of
the Freed-Witten anomaly.

Can one derive the anomalous terms from
the Pfaffian of the Dirac operator?




