Nonstandard Intuitionistic Interpretations

We present a notion of realizability and a functional interpretation in the context
of intuitionistic logic, both incorporating nonstandard principles.

In a recent paper Ferreira and Gaspar [4] showed how the bounded func-
tional interpretation of [5] can be recast without intensional notions by going
to a wider nonstandard setting. This was carried out in the classical setting.
The bounded functional interpretation relies on the Howard/Bezem notion of
strong majorizability introduced in [6] and [3] (see also [8]). The functional
interpretation that we present corresponds to the intuitionistic counterpart of
the interpretation given in [4]. It has some similarities with [1] but it replaces
finiteness conditions by majorizability conditions.

Nonstandard methods are often regarded as nonconstructive. Our interpre-
tations intend to seek for constructive aspects in nonstandard methods (in the
spirit of, say, [1] and [2]).
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